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Abstract. When a tutoring system aims to provide students with interactive help, it needs to
know what knowledge the student has and what goals the student is currently trying to achieve.
That is, it must do both assessment and plan recognition. These modeling tasks involve a high
level of uncertainty when students are allowed to follow various lines of reasoning and are
not required to showall their reasoning explicitly. We use Bayesian networks as a comprehensive,
sound formalism to handle this uncertainty. Using Bayesian networks, we have devised the prob-
abilistic student models for Andes, a tutoring system for Newtonian physics whose philosophy
is to maximize student initiative and freedom during the pedagogical interaction. Andes’
models provide long-term knowledge assessment, plan recognition, and prediction of students’
actions during problem solving, as well as assessment of students’ knowledge and understanding
as students read and explain worked out examples. In this paper, we describe the basic mechan-
isms that allow Andes’ student models to soundly perform assessment and plan recognition,
as well as the Bayesian network solutions to issues that arose in scaling up the model to a
full-scale, ¢eld evaluated application.We also summarize the results of several evaluations of
Andes which provide evidence on the accuracy of its student models.
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1. Introduction

One of the key elements that distinguishes Intelligent Tutoring Systems (ITS) from

more traditional educational systems is their ability to interpret student actions to

maintain a model of student reasoning and learning – the student model (Shute and

Psotka, 1996). Like user models for non-ITS software, the student model allows

an ITS to adapt the interaction to its user’s specific needs. However, unlike non-

ITS software, the ultimate goal of an ITS’s interventions is to help its users learn

a target instructional domain. This adds a great deal of uncertainty to the user mod-

eling problem, because it entails inferring from the student’s actions the student’s

degree of mastery of the target domain knowledge, a process known as assessment
or knowledge tracing (Anderson et al., 1995). The uncertainty regarding the student’s
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domain knowledge affects the second kind of modeling common to many adaptive

systems that aim to provide interactive help: planrecognition, or understanding what

the user is trying to do. The uncertainty in assessment influences plan recognition

because the student’s knowledge of the underlying plans affects which goals are most

likely to be the focus of the student’s attention.

In this paper, we describe how we use Bayesian networks (Pearl, 1988) as a unifying
framework to manage the uncertainty in student modeling.The models that we present
have been implemented in Andes, an intelligent tutoring system designed to help stu-
dents learn Newtonian mechanics at the university level. Beside providing tailored
support during problem solving (VanLehn,1996; Gertner and VanLehn, 2000; Schulze
et al., 2000), Andes also helps students study examples e¡ectively, a novel task that
adds new sources of uncertainty to the student modeling problem (Conati and Van-
Lehn, 2000; Conati et al., 1997).

Awell-known, fundamental problem of both plan recognition and assessment is the
assignment of credit problem. If there are multiple explanations for a student’s action,
which is the most likely? That is, how much credit should be given to each explanation?
This problem is exacerbated if a system does not require students to explicitly express
all the steps in their reasoning, so that the actions that the system sees can be the
result of a chain of inferences rather than of a single inference. Early solutions to this
problem were based on heuristics or on maximizing coverage of positive evidence
while minimizing coverage of negative evidence (Reggia and D’Autrechy, 1990; Polk
et al., 1995). Recognizing the limitations of these approaches, other tutoring systems
opted to reduce the number of cases where multiple explanations of student actions
could occur.This is done by constraining students to follow a prede¢ned line of reason-
ing and requiring them to make all of their reasoning explicit (Anderson et al.,
1995). However, this kind of limitation of student initiative and freedom is not an
option for Andes. Andes was designed in collaboration with physics professors at
the US Naval Academy, who felt strongly that all possible correct solutions should
be acceptable to Andes, and that their students would simply not use a system with
an overly constraining interface.

One of the main contributions of Andes’ student model is that it provides a com-
prehensive solution to the assignment of credit problem for both knowledge tracing
and plan recognition, without reducing student initiative. Andes’ solution scales
up an approach ¢rst introduced in (Conati and VanLehn, 1996b). Because this
approach uses the same Bayesian network for solving both problems, the solutions
work together. Plan recognition in£uences assessment while at the same time assess-
ment in£uences plan recognition, and these mutual in£uences are mathematically
sound. This is crucial for accurate student modeling in Andes, because students often
do not have knowledge of all the available plans.Thus, the assessment ofwhat a student
knows should in£uence the probability of what solution the student is following,
and vice versa. Although knowledge assessment and plan recognition are thus strongly
related, very little research in plan recognition has leveraged this connection (Jameson,
1996; Carberrry, 2001).
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A second contribution of Andes’ student model is that it supports prediction of
student actions during problem solving, in addition to knowledge tracing and plan
recognition. Because in physics each solution can be implemented through di¡erent
action orderings, being able to predict what inferences and actions a student can per-
form in the context of a particular solution greatly improves the help that the system
can provide when the student does not know how to proceed.While several systems
have used probabilistic methods to perform one or two of knowledge tracing, plan
recognition and action prediction (Jameson, 1996), Andes student model has been
the ¢rst to support all these modeling tasks at once.

Finally, deploying a system that supports example studying in addition to problem
solving, and that covers a full-semester physics course, required ¢nding
solutions within the Bayesian network framework to several other student modeling
problems. In the rest of the paper, we will show how the Bayesian network approach
allowed us to devise fairly simple solutions to these problems. However, it should
be stressed that Bayesian networks are just a notation, albeit a very powerful one.
The real solutions to the student modeling problems we faced are certain cognitive
and pedagogical hypotheses, as we will discuss. They are represented in the Bayesian
network framework, but that only gives them precision and not validity. The merit
of these hypotheses can only be established through extensive empirical testing
and re¢nement. The evaluations that we describe at the end of the paper are a start
in this direction.

The paper is organized as follows. First, the user interfaces of Andes are presented,
followed by a brief description of the modeling problems that will be discussed. After
this introduction, the main part of the paper describes Andes’ Bayesian networks
and how they are used for tutoring. The ¢nal part discusses evaluations of Andes,
related research, some unsolved problems and proposed future work.

1.1. THE TASK DOMAIN AND THE STYLE OF TUTORING

The Andes system is intended to help students learn Newtonian mechanics as it is

taught in introductory physics courses at the university level. Although such courses

have several instructional objectives, a common one is that students learn how to

solve physics problems that involve algebraic analyses of physical situations. For

instance, a simple problem is

‘A car starts moving with constant acceleration a at time T0 and after 30 sec-
onds has moved D meters and reached a velocity V1 of 30 Km/h. What is the
acceleration of the car?’

This problem requires knowing what ‘acceleration’ and ‘velocity’ are, and how they

are related. These are the key physics concepts involved. It also requires knowing

that the method to solve this problem involves the equations describing motion with

constant acceleration, which in turn requires knowing the distance traveled in a given

time interval as well as the initial and final velocity in that interval. However, the

students must also know some mathematical principles – for instance how to operate
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with vectors. Thus, the knowledge that students must master to solve such problems

is a mixture of physics principles, mathematical principles and methods for applying

them. In the knowledge base that represents Andes’ model of the task domain, con-

dition-action rules are used to represent all of these different kinds of knowledge.

Thus, we use ‘rule’ to refer to any of the relevant pieces of knowledge, regardless

of whether the content is procedural or conceptual, physical or mathematical.

Andes is not designed to teach a physics course all by itself. Students must still
attend all class meetings and read their textbook. Andes’ role is to assist learners with
two homework activities: studying solutions of correctly solved problems (examples),
and solving problems. These two activities often consume the largest portion of a stu-
dent’s study time, so if Andes can increase students’ learning during problem solving
and example studying, then it should have a major positive impact on their overall
learning in the course.

Because students have seen problems being solved in class, they are not completely
naivewhen they start working withAndes.Thus, its pedagogical policy is to let students
do as much of the work as possible on their own. Andes o¡ers help only when students
ask or when it sees a particularly compelling reason to o¡er unsolicited help.

1.2. ANDES’ PROBLEM SOLVING INTERFACE

The Andes interface for problem solving consists of two main entry panes (Figure 1)

in which students can draw vector diagrams (upper left) and enter equations (lower

right), as well as the variable definitions pane, located above the equation pane, and

the hint window, below the diagram pane on the left.

Andes provides two kinds of pedagogical interventions during problem solving:
immediate feedback and help. Every entry the student makes in the problem solving
interface, both in the diagram pane and the equation pane, receives immediate feed-
back by changing the color of the entry: green for correct and red for incorrect.

The two main types of help that Andes provides are:

. Error help. Students can select an incorrect (red) entry and can click on a button
labeled ‘what’s wrong with that?’ In response, Andes generates hints suggesting
what to focus on in order to ¢x the error.

. Procedural help. At any time, the students can ask for a hint on what would be a
good next step to take.

These types of help are designed to help the student learn. This means that they often
do not directly answer a student’s help request. Instead, they give a hint sequence
designed to encourage the student to work out as much of the answer on her own
as she can. The ¢rst hint often mentions only a goal or feature involved of the correct
step. Subsequent hints become more speci¢c. The ¢nal hint in the sequence, called
the ‘bottom-out hint’ (Koedinger and Anderson, 1993), indicates exactly what step
the student should enter.
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1.3. ANDES’ EXAMPLE STUDYING INTERFACE

In addition to the problem solving interface, Andes provides students with an inter-

face to study examples under the supervision of the SE-Coach (Conati and VanLehn,

2000; Conati et al., 1997). The main pedagogical goal of the SE-Coach is to get stu-

dents to self-explain examples, that is to clarify to themselves why and how each line

of an example solution is derived. The SE-Coach is specifically designed to counter-

act the tendency that many students have to not self-explain, a tendency that can hin-

der effective learning from examples (Chi, in press). Thus, it needs to monitor

whether students self-explain spontaneously and encourage self-explanation for

those students who do not.

Since natural language understanding technology is still not powerful enough to
reliably monitor self-explaining expressed verbally or as free text, the SE-Coach inter-
face includes two alternative mechanisms: a masking interface to track the student’s
attention and a set of menu-based tools. The menu-based tools allow students to
express self-explanations explicitly, if they want to. The masking interface allows
the coach to measure how long the student focuses on a particular solution step. Such
latency data helps the coach determine probabilistically when the student constructed
a self-explanation mentally, without entering it using the menu-based tools.

Figure 2 shows one of the SE-Coach’s examples (on the left) as it is presented with
the masking interface (on the right).Viewing a solution step in the example requires

Figure 1. Andes problem solving interface.
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moving the mouse cursor over the box that covers it.When the student uncovers a step,
a ‘self-explain’ button appears next to it, as a reminder to self-explain. Clicking on
this button generates more speci¢c prompts that suggest two kinds of self-explanations
known to be highly e¡ective for learning (Renkl, 1997):

1. explaining an example solution step in terms of domain principles (step correct-
ness);

2. explaining the role of a solution step in the underlying solution plan (step utility).

The SE-Coach’s menu-based tools are designed to help students generate these two

kinds of explanations, if they have trouble doing so by themselves.

To explain step correctness, the student can activate a Rule Browser (see Figure 3a)
containing the hierarchy of physics rules represented in the Andes’ knowledge base,
and select the rule that justi¢es the uncovered solution step. To explain more about
the actual content of a rule, the student can activate a Rule Template. The Template
contains a partial de¢nition of the rule that has blanks for the student to ¢ll in
(see Figure 3b). This de¢nition is in terms of preconditions and consequences of
the rule application, re£ecting the de¢nition of the rule in the Andes’ knowledge base.
The student can complete the blanks in the de¢nition through selection in associated
menus of possible ¢llers (see Figure 3b).

To explain step utility, the student activates a Plan Browser, that displays a hierarch-
ical tree representing the goal structure of the solution plan for a particular example.
The student must try to select the plan goal that most closely motivates the uncovered
solution step.

The SE-Coach’s interventions during example studying include immediate
feedback and explicit support on the self-explanation process. Immediate feedback
is provided as a red or green marking on every student’s entry in the self-explanation
tools.

Figure 2. A physics example (on the left) as presented in the masking interface (on the right).
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Explicit support for self-explanation is provided only when the student tries to leave
the example. The support is given if the SE-Coach believes that the student would
bene¢t from further explanation of some of the example’s lines, either because the
student does not have su⁄cient knowledge of the rules necessary to explain the lines
or because he has not spent su⁄cient time reasoning about them. In this case, the
SE-Coach generates awarning and highlights the appropriate masking interface boxes
by coloring them pink. It also labels each box to suggest whether the student should
explain step correctness or step utility or both, as an additional support for the student
to explain those steps. The student is free to ignore the SE-Coach’s suggestions
and leave the example with no further action.

1.4. ANDES’ BASIC APPROACH TO STUDENT MODELING

As mentioned earlier, because Andes allows students to pursue different correct solu-

tions during problem solving, one of the main issues that Andes’ student model

needs to address is the assignment of credit for both plan recognition and assess-

ment. That is, if a student action belongs to different solutions, which solution

and corresponding student knowledge should be credited for it? Andes’ student

model handles this issue through a technique based on Bayesian networks. The tech-

nique was pioneered by the OLAE system for off-line assessment (Martin and Van-

Lehn, 1995), and was extended to on-line assessment and plan recognition by the

POLA student modeler, but only in prototype form (Conati and VanLehn, 1996a;

Conati and VanLehn, 1996b).

In order to illustrate the basic technique, which is fundamental to the operation of
the Andes’ student model, consider a simple case where there are just two explanations
for a particular student action. Suppose each explanation involves just one rule,
and the preconditions of both rules are satis¢ed directly by the state immediately prior
to the student’s action. This would be represented with the Bayesian network shown

Figure 3. Rule browser and a rule template.
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in Figure 4.The two parent nodes represent the rules, and the third node represents the
student’s action. The two parent nodes represent binary variables: true means the stu-
dent has mastered the rule, and false means the student has not. Each rule node
has a prior probability of mastery, which is the system’s best estimate of the student’s
competence prior to seeing this action. The action node is also binary, and its value
represents whether the action either has or has not occurred. The action node has
a conditional probability table that says, in essence, if either parent rule is mastered,
then the action will probably be executed; if both parent rules are non-mastered, then
the action will probably not be executed. When the action is observed to occur,
the action node is clamped to its ‘occurred’ value, and the network is updated. This
causes the two parent nodes to acquire a marginal posterior probability, which repre-
sents the system’s new best guess about the student’s competence. If one node has
a much higher prior probability than the other then, by the Bayesian update rule,
it will get most of the credit for explaining the student’s action in that its posterior
probability will increase more than the other node’s.

This method of assigning credit is mathematically sound. Of course, whether it
accurately predicts student competence depends on both the cognitive model qua net-
work topology (e.g., are there really just two rules?) and on the prior and conditional
probabilities in the nodes.

A Bayesian network can also handle the dual problem, assignment of blame. For
instance, suppose that two rules must both be applied in order to produce a certain
action. If the student cannot do the action, then the student is probably unable to
use one or both rules. This would also be modeled by the simple network of Figure
4, except that the conditional probability table for the action node would be di¡erent:
if both parents are mastered, then the action will probably be executed; if either is
non-mastered, then the action will probably not be executed.1 If the student is unable
to perform the action, then the action node’s value is clamped to ‘non-occurred’
and the network is updated.This causes the posterior probabilities of mastery on both
rules to be less than their prior probabilities. Because the student must be ignorant
of at least one of the rules, the network has ‘blamed’ both of them for the non-occur-
rence of the action. If one rule has a much lower prior probability of mastery, then

Figure 4. A simple example of a Bayesian network for assignment of credit.

1This is a simplification of Andes’actual network structure (described in Section 2.2.2), but it reflects the
same basic update mechanism.
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it is more likely to be the missing rule, so it gets more of the ‘blame.’ This is a math-
ematically sound technique for solving the assignment of blame problem.

Although these illustrations have emphasized determining probabilities of mastery,
which is the assessment part of the student modeling task, the same basic approach
can be used for plan recognition. One represents possible student goals as parent nodes
of observable actions, and the network will assign posterior probabilities to them that
indicate the likelihood that those goals (intentions) underlie student actions.

Most importantly, such Bayesian networks cause assessment and plan recognition
to interact seamlessly. Goals from explanations that involve probably mastered rules
receive more credit for observed actions (and less blame for non-observed actions)
than goals from explanations that involve probably unmastered rules. The mathema-
tical soundness and the elegance of this approach motivated our adoption of it for
Andes.

However, Andes is a real-world tutoring application, and thus we had to solve many
technical problems to adopt the described approach for its student model. One
was simply scaling the technology up. Many actions may be involved in solving a phy-
sics problem, and each action can require many rule applications to explain it. This
makes the Bayesian network representing the problem solution quite large. Moreover,
since the same rule can be used many times in solving a problem, each network
can be highly interconnected.The size and topology of the networks could make them
di⁄cult to update in real time.

A second scaling problem is simply managing all the networks representing
the many di¡erent exercises covered by Andes, and their relationships. Since the
Andes system has over a 100 physics problems in it, it is not feasible to create each
problem’s network by hand. Moreover, the networks are all related because they
all share the same rule nodes, yet it is clearly infeasible to use one monolithic network
that spans all actions in all physics problems. Moreover, if even a small change in
the knowledge representation is required, it can a¡ect the networks of many
problems.

In addition to these problems of scale, realistic student modeling requires interpret-
ing much more than just problem solving actions made by students. In particular,
Andes’ Bayesian networks must deal with the following issues:

1. Context speci¢city: knowledge is sometimes acquired ¢rst in a more speci¢c
form then generalized, thus making near transfer (i.e., transfer to very similar
application contexts) easier to obtain than far transfer (i.e., transfer to dissimilar
application contexts) (Singley and Anderson, 1989). How can we track the gen-
erality of competence?

2. Guessing: some actions are easier to guess correctly than other actions. How
should assignment of credit re£ect this?

3. Mutually exclusive strategies: some problems have multiple, mutually exclusive
solution strategies. Should evidence that the student is following one strategy
be interpreted as evidence that they are not following the other strategy?
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4. Old evidence: how should evidence from earlier problems a¡ect the interpretation
of evidence from the current problem? If students learn a rule, then old evidence
that they were ignorant of the rule should be ignored. Should forgetting also
be explicitly modeled?

5. Errors: should errors of omission (missing actions) be interpreted the sameway as
errors of commission (incorrect actions)? When can we assume that a student
does not know how to do an action?

6. Hints: when the student has received hints before entering a correct action, how
much credit should the goals and rules that explain that action receive?

7. Reading latency: when students study examples, they pause longer as they read
some lines than others, and this may be evidence of self-explanation. How
can we properly interpret the latency of reading times?

8. Self-explaining ahead: some students prefer to self-explain solution steps before
reading them in the example, while others prefer to read steps then self-explain
them (Renkl, 1997). How should such preferences a¡ect the interpretation of
reading latencies?

9. Self-explanation menu selections: when students use menus to express self-expla-
nations, they may make a few errors and get feedback from the SE-Coach on
each, then enter a complete self-explanation. How should a sequence of such
menu selections be interpreted for knowledge assessment?

Although Bayesian networks were adopted in order to handle the assignment of

credit and blame problems, they simplified handling the problems listed above as

well. By using Bayesian networks, we were able to express sensible policies for hand-

ling those issues. We do not know if the individual policies are correct – that would

require testing each one in isolation – but the policies did function well enough as a

group that students using Andes learned more than students using more conven-

tional instruction, as we will illustrate in a later section.

The remaining sections ¢rst describe Andes’ Bayesian networks in general, then
how they are used for coaching problem solving and for coaching example studying.
These technical sections are followed by a summary of our evaluation results, which
have been published in more detail elsewhere. The ¢nal sections discuss what we have
learned, especially about the interpretation issues listed above, and how Andes’ solu-
tions compare to others in the literature. Our overall claim is that Andes is an existence
proof that sensible policies for handling tricky interpretation issues can be easily
expressed in Bayesian networks and yet the networks can still be updated in real time,
even when brought to the scale required by an ITS that has been used daily by hundreds
of students for most of a semester.

2. The Networks of Andes

One of the scaling problems that Andes’ Bayesian approach to student modeling pre-

sented is how to efficiently build the networks to cover the many exercises that Andes
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provides. Rather than create a Bayesian network by hand for each problem and

example, Andes’ networks are created by running a problem solver that for each pro-

blem and example generates a data structure called a solution graph, which is then

converted to a Bayesian network. Thus, Andes uses the knowledge-based model con-
struction approach to building Bayesian networks that has been actively investigated

in recent years (Martin and VanLehn, 1993; Breese, Goldman and Wellman, 1994;

Huber, Durfee and Wellman, 1994; Mahoney and Laskey, 1998).

For problem solving, Andes’ solution graph represents all the correct solution paths
of a problem. For example studying, the solution graph represents the single solution
path that an example describes. In the next sections, we describe how the solution
graph is created and how it is converted into a Bayesian network.

2.1. THE SOLUTION GRAPH REPRESENTATION

The solution graph structure used by Andes’ student model is generated prior to run

time by a rule-based physics problem solver. The rules are being developed in colla-

boration with four professors from the U.S. Naval Academy (Schulze, et al., 1998).

Andes’ knowledge base is built in CLIPS and contains 540 rules that can solve about

120 mechanics problems. The problems cover the first 11 weeks of physics teaching

at the Academy and include most topics in introductory mechanics.

Like other rule based ITSs (e.g., Anderson et al., 1995), Andes rules encode a solu-
tion approach that uses goals to focus the problem solving and qualitative reasoning
to prepare for the more algebraic, quantitative reasoning. Figure 5a and Figure 5b

Figure 5. Sample rules in the Andes’ knowledge base.
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show two sample rules involving goals, while Figure 5c and Figure 5d show two sample
rules encoding qualitative physics principles.

When a new problem or example is created for Andes, the problem author must
encode the givens for the problem in the language of the Andes problem solver.
For instance, if the problem states that

A block (A) of mass 50 kg rests on top of a table. Another block (B) of mass
10 kg rests on top of block A. What is the normal force exerted by the table on
block A?

the givens to the problem solver would include the proposition:

(SCALAR (KIND MASS) (BODY BLOCK-A) (MAGNITUDE 50)

(UNITS KG))

meaning that there exists a scalar quantity of type mass which is a property of block

A and has a magnitude of 50 kg. The problem author also encodes the problemgoal,
specifying what quantity (or quantities) the problem asks the student to find:

(GOAL-PROBLEM (IS FIND-NORMAL-FORCE)

(APPLIED-TO BLOCK-A) (APPLIED-BY TABLE) (TIME 1 2))

Starting from a problem’s givens and goals, the problem solver iteratively applies

rules from its rule set, generating sub-goals and intermediate results until all the

sub-goals have been achieved. These goals and results are then written to a solution

graph, along with the connections between them (e.g., if results 1 and 2 were both

used by rule 3 to generate result 4, then 1 and 2, along with rule 3, are recorded

in the solution graph as being parents of 4).

For instance, consider the example problem statement given above and
shown in Figure 6A. The problem solver starts with the top-level goal of ¢nding
the value of the normal force Nat. From this, it forms the sub-goal of using Newton’s
second law to ¢nd this value. Next, it generates three sub-goals corresponding to
the three high-level steps speci¢ed in the procedure to apply Newton’s second law
(SFi ¼ m�a):

1. choose a body/bodies to which to apply the law,
2. identify all the forces on the body,
3. write the component equations for SFi ¼ m�a.

From here, it continues to apply rules until it generates a partially ordered network of
goals and sub-goals leading from the top-level goal to a set of equations that are suf-
¢cient to solve for the sought quantity. When the solution graph is generated for a
problem, it encodes all the alternative plans and solutions that are acceptable to solve
the problem, so that Andes can monitor and support the student in the development
of any of these solutions. When the solution graph is generated for an example, it
encodes only the solution that the example presents, because this is the solution that
the student needs to understand.
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Figure 6B shows a (simpli¢ed) section of the solution graph for the problem in
Figure 6A, involving theapplicationofNewton’s second law to¢ndthevalueofthe normal
force. Each node in the solution graph represents a particular type of information (fact,
goal, rule, rule application), as indicated by the node pre¢xes. These node types will
be discussed in detail in the next section.We will use the example in Figure 6 to show
how the solution graph is automatically converted into a Bayesian network, and describe
the di¡erent types of nodes in the network and the relationships between them.

2.2. STRUCTURE OF ANDES’ BAYESIAN NETWORKS

Andes’ Bayesian networks encode two kinds of knowledge: (1) domain-general
knowledge, encompassing general concepts and procedures that define proficiency

in Newtonian physics, and (2) task-speci¢cknowledge, encompassing knowledge rela-

ted to a student’s performance on a specific problem or example.

The part of the Bayesian network encoding domain-general knowledge is built
when the Andes knowledge base is de¢ned, and its structure is maintained across
problems and examples. At any time, the marginal probabilities in this network repre-
sent Andes’ assessment after the last performed exercise.

Figure 6. A physics problem and a segment of the corresponding solution graph. Some nodes are omitted

for readability. Node prefixes (R, RA, G, F) indicate the type of the node, which will be discussed in detail

in Section 2.2.2.
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The part of the network encoding task-speci¢c knowledge is automatically generated
from the solution graph of each problem or example when the student begins to work
on it.When the student has ¢nished the current exercise, the task-speci¢c part of the
network is discarded, and the updated domain-general marginal probabilities are
‘rolled-up’ as priors for the next exercise. That is, Andes uses a dynamic belief network
(Dean and Kanazawa,1989; Russell and Norvig,1995), to solve a second scaling problem
of its student modeling approach: how to maintain a network of manageable size that
still accurately represents the complete history of a student’s interaction with the system.
The following sections describe the structure of the networks, how roll-up is done,
and how the conditional probabilities in the networks were determined.

2.2.1. The Domain-general Part of the Bayesian Student Model

The domain-general part of the network represents student long-term knowledge, via

two different types of nodes: Rule and Context-Rule. Every node has two values,

mastered or unmastered. For Rule nodes, mastery means that the student should

be able to apply that piece of knowledge correctly whenever it is required to solve

a problem, i.e., in all possible contexts. However, this simple mastered/unmastered

distinction is only a crude model of human learning. Even when learning just a single

fact, humans find it easier to remember the fact if the context of recall matches the

context in which it was learned (Tulving and Thomson, 1973). When people learn a

whole skill, many studies (reviewed in (Singley and Anderson, 1989)) have found that

they can solve problems similar to the ones they were trained on (near transfer) long

before they can solve problems that are dissimilar (far transfer). In short, as a general

rule of thumb, knowledge is first acquired in a specific form then gradually general-

ized, an issue we referred to as context speci¢city in Section 1.4.

Andes uses the distinction between Rule nodes and Context-Rule nodes in order to
model the context speci¢city of student knowledge. A Rule node represents a piece
of knowledge in its fully general form. A Context-Rule node represents mastery of
a rule in a speci¢c problem solving context.

In order to represent the relationship between the general and speci¢c versions of
apiece ofknowledge, every Context-Rule nodehas one parent, theRule node represent-
ing the corresponding general rule (see Figure 7). This structure is similar to the one
used by Hydrive (Mislevy and Gitomer, 1996), where the parent rules represented
general knowledge (e.g., hydraulics) and the child rules represented applications of
the knowledge in speci¢c, named contexts (e.g., the landing gear; the cockpit canopy).

The conditional probability table of a Context-Rule given its parent Rule is de¢ned
as follows:

. PðContext-Rulei¼MasteredjRule¼MasteredÞ is always equal to 1, because by de¢-
nitionPðRule¼Mastered) means that the student can apply the rule in every context.

. PðContext-Rulei¼MasteredjRule¼Not masteredÞ represents the probability that
the student can apply the general rule in the corresponding context even if
she cannot apply it in all contexts.

384 CRISTINA CONATI ET AL.



This network structure represents a hypothesis about transfer. Rule nodes in the
domain-general part of the network are never directly observable, so sibling Con-
text-Rules are always conditionally dependent. This means that user interface actions
that increase the probability of mastery of one Context-Rule will tend to increase
the probability of the parent Rule and thus increase the probability of masteryof sibling
Context-Rules. This is an empirically testable hypothesis about physics learning.
In particular, results on transfer could be used to adjust the conditional probabilities
in the Context-Rules, or even the topology of the network.Thus, the network provides
a particularly simple, precise representation of a‘mini-theory’of transfer, which invites
testing but does not replace it.

2.2.2. The Task-speci¢c Part of the Bayesian Student Model

The task-specific part of the Bayesian student model contains Context-Rule nodes

and four additional types of nodes: Fact, Goal, Rule-application and Strategy nodes.

All the nodes are read into the network from the solution graph for the current pro-

blem or example when the student opens it. The structure of the solution graph

already encodes the inferential structure of the problem solutions and therefore is

preserved isomorphically in the Bayesian network. For instance, a segment of the

Bayesian network created for the problem in Figure 6A corresponds exactly to the

solution graph segment in Figure 6B, where Context-Rule, Fact, Goal, Rule-Appli-

cation and Strategy nodes are labeled respectively by the prefixes R-, F-, G-, RA
and S-.

2.2.2.1 Fact and Goal nodes. Fact and Goal nodes (collectively called Proposition
nodes) look the same from the point of view of the Bayesian network.They both repre-
sent information that is derived while solving a problem by applying rules from the
knowledge base. The di¡erence between Goal and Fact nodes is in their meaning
to Andes’ help system: the probabilities of Goal nodes will be used to construct tuto-
rial interventions focused on the planning of the solution, while the probabilities
of Fact nodes will be used to provide more speci¢c interventions on the actual solution
steps.

Proposition nodes have a binary value indicating whether they are inferable. If a
node has the value T, it represents that the student either has already inferred that
fact/goal or can infer it given her current knowledge.

Figure 7. Relation between rule and Context-Rule nodes.
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Proposition nodes have as many parents as there are ways to derive them. Thus, if
there are two di¡erent rule applications that conclude the same fact, then the corre-
sponding Fact node will have two parents. This is the basic structure that Andes net-
works use to handle the apportion of credit problem.

The conditional probabilities between Proposition nodes and their parents are
described by a Leaky-OR relationship (Henrion, 1989), as shown in the lower part
of Figure 8. In a Leaky-OR relationship, a node is true if at least one of its parents
is true, although there is a non-zero probability b of a ‘leak,’ i.e. that the node is true
even when all the parents are false.

The leak probability b is Andes’ solution to the guessing problem mentioned
in Section 1.4. It represents the likelihood that the student obtains the proposition
via guessing, asking a friend for help, or some other method that is not modeled
by the network. The leak probability can be adjusted to represent how easy it is
to correctly guess a fact. For instance, a fact that asserts that an object’s accelera-
tion is constant is easier to guess than one that asserts the acceleration’s direction,
because acceleration is either constant or non-constant, whereas there are many more
possibilities for its direction. Thus, our Bayesian framework allows us to concisely
express a precise hypothesis about guessing, although empirical work is required
to test it.

2.2.2.2. Rule-application nodes. Rule-application nodes connect Context-Rule
nodes, Proposition nodes, and Strategy nodes (described later) to new derived
Proposition nodes. The parents of each Rule-application node include exactly one
Context-rule, some number of Proposition nodes corresponding to the Context-
rule’s preconditions (see Figure 8) and, optionally, one Strategy node.

Rule-application nodes have a binary value indicating whether the student is cap-
able of applying the rule or not. A Rule-application node’s value is T if the student
has applied or can apply the corresponding Context-Rule to the propositions repre-
senting its preconditions. The probabilistic relationship between a Rule-application

Figure 8. Probabilistic relations among nodes in the task-specific part of the Bayesian network.
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node and its parents is a Noisy-AND (Henrion, 1989). The Noisy-AND relation
models the following assumptions

. in order to apply a rule to derive an element in a problem or example solution, the
student needs to know the rule and all of the solution elements corresponding
to the rule preconditions.

. there is a non-zero probability a, the noise in the Noisy-AND, that the student will
not apply the rule even if the rule and all its preconditions are known.

The noise parameter a represents the fact that even if a Context Rule is mastered
and all its preconditions are known, a student may fail to apply it sometimes, a phe-
nomenon referred to as a slip (Norman, 1981). Thus, a should be viewed as part
of the de¢nition of mastery, because it represents the expected frequency of slips. Once
again, the network allows us to precisely represent a testable hypothesis.

2.2.2.3. Strategy nodes. Because Andes allows students to follow di¡erent correct
solutions to a problem, it needs to deal with the issue we labeled as mutually exclusive
strategies in Section 1.4. Suppose we have the simple situation shown in Figure 9,
in which there are two rule applications, both achieving the same goal as part of
two di¡erent solutions. Suppose somewhere beneath the left rule application, an action
occurs. This raises the posterior probability of both the left rule application and
the goal. However, the credit £owing to the goal also raises the posterior probability
of the right rule application. If the two rule applications are actually mutually exclusive
means for achieving that goal, then raising the posterior probability of one should
lower the posterior probability of the other. In order to model this, the network topo-
logy was augmented with Strategy nodes, extending a solution ¢rst proposed in (Con-
ati and VanLehn, 1996a).

A Strategy node is paired with a Goal node when there is more than one mutually
exclusive way to address the goal. The children of Strategy nodes are the Rule-
application nodes that represent the implementation of the di¡erent strategies. In
Figure 6B, for instance, the Strategy node S-choose-body-strategy is paired with the
goal of choosing a body, and points to the application nodes representing the decisions
to choose block A and block B as separate bodies (node RA-choose-separate-bodies

Figure 9. A simple Bayesian network illustrating the lack of mutual exclusion.
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in Figure 6B) and to choose as a body the compound of the two blocks (node RA-
choose-compound-body in Figure 6B).

A Strategy node has two or more values, one for each of its children. The prior
probabilities of these values indicate the frequency with which students tend to choose
the corresponding strategies. A rule application node that is the child of a Strategy
node has a 1.0 probability of applying if the Strategy node has the value corresponding
to it, and a zero probability of applying otherwise. In short, the mutual exclusion
of strategy node values is used to enforce the mutual exclusion of rule applications.

2.2.3. Calibration: Determining Prior Probabilities

Every node in a Bayesian network has a conditional probability table whose num-

bers must be determined before the network can be used. As the earlier discussion

indicated, many of these numbers calibrate hypotheses about the context specificity

of learning, guessing and so on, and thus the numbers ought to be determined via

experimentation designed to test these specific hypotheses. Because the same para-

meters appear many times in the network, there are many fewer parameters to esti-

mate than there would be if the network were not constrained by these hypotheses

and every cell in every conditional probability table had to be determined separately.

Moreover, the parameters have meaning apart from their occurrence in the network.

For instance, a represents the frequency of slips for a mastered rule. When a para-

meter cannot be estimated from data, having a specific meaning makes it possible

to base estimates for it on results from the literature. Even subjective estimates are

probably improved when the parameters have well-defined meanings.

Although the hypotheses cover most of the conditional probabilities in the network,
they do not cover the probabilities of the Rule nodes. Since a Rule node has no parents,
its conditional probability table represents the prior probability of the student’s mas-
tery of the rule. Such priors are especially important, because, as illustrated earlier,
when two rules compete to explain evidence, the rule with the higher prior probability
receives more credit, all other things being equal. Similarly, rules with lower priors
get more blame for missing actions. Data from multiple-choice tests were used to
set the prior probabilities on 66 of the Rule nodes (VanLehn et al., 1998). The other
474 rules did not apply in the problems on the test, so we could not set their prior prob-
abilities empirically. Their priors were set to 0.5.

Even thoughwe had to use subjective judgments to set most of the parameters in the
network, this is still an advance over a purely heuristic approach since at least the
structure of the network is theoretically grounded and the calculations are sound.
We have conducted an evaluation of the sensitivity of the networks’assessment to their
parameters, and the results are summarized in a later section.

2.2.4. Rollup: Summarizing Past Evidence

Although the interpretation of a student’s actions should be affected by all the

evidence seen so far from the student, it is not practical to use one huge Bayesian
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network that spans all the problems that the student has worked on. As mentioned

earlier, we use DynamicBayesianNetworks (Dean and Kanazawa, 1989; Russell and

Norvig, 1995) to reduce the size of the network that models each individual interac-

tion with Andes. The roll-up mechanism in dynamic Bayesian networks allows one

to periodically summarize the constraints imposed by older data, then prune away

the network that interpreted that data. In particular, Andes keeps the structure of

the domain-general part of the network intact over all exercises, but it prunes away

the task-specific part of the network as soon as that task is exited by the student.

However, the posterior probability of each Rule node in the task-specific network

for the last solved exercise is ‘rolled-up’ in the domain-general network, to become

the prior probability of that Rule node in the task-specific network for the next pro-

blem or example that uses it.2

If one had a vast Bayesian network where actions in all problems were children of
the same rule nodes, then evidence from past problems would have the same weight
as evidence from recent ones. However, students may learn or forget rules. Thus,
recent evidence should count more than old evidence when determining which rules
are currently mastered. For instance, one could use an explicit ‘window,’ so that only
evidence that is recent enough to ¢t in the window are used to update the probabilities
of mastery. Corbett and Anderson (Corbett and Anderson, 1995) have developed
a simple model of learning that makes transition to rule mastery at time Ta function
of both the evidence and the probability of mastery at time T�1. Basically, given
the same evidence, the probability of a rule being mastered at time T is higher if
it was mastered at time T�1 than if it was not mastered at time T�1. This represents
hypotheses about the relative rates of learning and forgetting. We achieve the same
e¡ect in Andes by using the simple roll-up mechanism of changing posterior marginal
Rule probabilities to priors. This causes rules with high posterior probability of mas-
tery at timeT�1 to attract slightly more credit for the evidence at timeT, thus causing
them to have slightly higher probability of mastery at time T than they would have
it they had had low posterior probability of mastery at timeT�1and the same evidence
were present. Thus, the old evidence still has some in£uence, although the rise in
probability of mastery is determined mostly by the strength of the new evidence. Mis-
levy and Gitomer (Mislevy and Gitomer, 1996) propose essentially the same solution
to modeling learning, but appear not to have implemented it.

2 This simple roll-up mechanism loses any dependency among rules encoded in the task-specific part of
the network. For instance, if two rules both explain an action (as in Figure 4), they are conditionally depen-
dent in the task-specific network.When the task-specific network is pruned away, the conditional depen-
dency is lost. This loss of information problem can be addressed by determining the main conditional
dependencies among pairs of Rule nodes with a Chi-squared technique, then installing new nodes in the
domain-general part of the network, whose conditional probability tables encode the strengths of the depen-
dencies (Martin and VanLehn, 1994). However, experimentation with OLAE suggested that in our task do-
main, the conditional dependencies are usually not very strong. Thus, Andes does not currently use this
more sophisticated roll-up technique.
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3. Probabilistic Student Modeling for Problem Solving

The preceding section discussed some basic aspects of Andes networks that are the

same for both problem-solving and example-studying. This section discusses how the

network is used during problem solving. It also describes a few structural details that

are unique to the problem-solving networks. The next section presents a similar dis-

cussion for the example-studying phase.

3.1. EXAMPLE OF PROPAGATION OF EVIDENCE IN THE STUDENT MODEL FOR PROBLEM

SOLVING

In order to illustrate the operation of Andes’ student model during problem solving,

suppose that a student is trying to solve the problem in Figure 6A and that her

first action is to select block A as the body. In response to this action, the fact node

F-A-is-body is clamped to T. Figure 10 shows the marginal probabilities in the

network before and after the action (probabilities on RA nodes have been omitted

Figure 10. The network before and after observing A-is-a-body. The first number given for each node

shows the probability of that node before observing A-is-a-body. The second number shows how the prob-

ability changes after observing A-is-a-body.
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for simplicity). Before the evidence is entered, these marginal probabilities reflect the

prior probabilities on the rule nodes (0.5 each), the high prior probability of the

given Goal node (G-find-Nat), and the priors on the Strategy node, which indicates

that the two strategies are equally likely a priori.
After the evidence is entered, the marginal probabilities of the non-given Fact and

Goal nodes involved in deriving the observed action may seem rather low. However,
for each proposition, the network evaluates the probability that it was derived vs. gues-
sed. The more rules involved in deriving a proposition, the lower the likelihood that
it was derived, since lackofmasteryof anyone of the rules would prevent its derivation.
The likelihood that a proposition is guessed is proportional to the parameter b in
its leaky-OR conditional probability table. In this example, all the rules have rather
low prior probabilities, so their products are even lower, thus giving more credit
to the possibility of guessing and keeping the posterior probabilities of the correspond-
ing propositions low.

These remarks are just a crude summarization of what actually happens when the
network is updated. Nonetheless, they suggest how complicated it would be to do
the same interpretation without Bayesian computations.

In addition to changing the probability of the ancestor nodes of an observed action,
updating the network also changes the probabilities of non-ancestor nodes, thus pre-
dicting what inferences the student is likely able to make after that action. In particular,
the relationship enforced by the Strategy node S-choose-body-strategy on its children
will slightly diminish the probability of the Goal node G-de¢ne-compound-AB and
increase the probability of the Goal node G-de¢ne-bodies-A-B. This last change will
propagate downward to increase the probability of the Fact node F-B-is-body, while
the increased probability of the Fact node A-is-a-body will slightly increase the prob-
ability of the Goal node G-de¢ne-Forces-on-A, as shown in Figure10. Using the sound
Bayesian propagation algorithm to predict the probability of student inferences is
one of the several advances that Andes’ student model brings to the basic Bayesian
approach adopted by its predecessors OLAE and POLA. It provides the problem
solving coach with a more principled, albeit still heuristic, mechanism to provide
its help, as we will illustrate in a later section.

3.2. INTERPRETATION PROBLEMSTHATAREUNIQUETOTHE PROBLEMSOLVING COACH

3.2.1. Errors of Omission and Errors of Commission

Whenever a student enters a correct action, the corresponding Fact node is clamped

to T, indicating that the student is capable of doing that action. What should the

tutor do when the student’s action is incorrect (an error of commission) or missing

(an error of omission)? Should a Fact node be clamped to F?

Let us ¢rst consider the interpretation of errors of omission. If the tutor required
that a certain action be done, and the student did not do it, then the Fact node cor-
responding to that action should be clamped to F. However, due to Andes’ philosophy
of allowing students to perform steps in any order and even to skip steps, there
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are only a few actions that Andes explicitly requires. In most cases, if the student has
not done an action, she may still be able to do it. Indeed, she may even have done
the action mentally or on a piece of scratch paper. Thus, Andes rarely clamps nodes
to false due to missing actions.

For errors of commission, where the student makes an incorrect action, there are
two cases. If the error implies that the student disbelieves a certain correct fact,
then the corresponding Fact node is clamped to F. For instance, if the correct fact
is that a vector is horizontal, and the student draws the vector pointing straight
up, then the student undoubtedly believes that the vector is not horizontal so Andes
clamps the horizontal Fact node to F. This ¢rst case, where the error implies disbelief
in a speci¢c correct fact, is relatively uncommon. The more common case is that
the student’s error is not inversely associated with a correct Fact. For instance,
if a student enters an incorrect equation, it is often not clear what correct equation
the student is trying to enter. A contradiction must be quite blatant (e.g., a vector
cannot point both horizontally and vertically at the same time) before we can
con¢dently infer that belief in one side of the contradiction implies disbelief in
the other side. Thus, only in a few cases will Andes clamp nodes false due to errors
of commission.

3.2.2. Updating the Student Model After a Hint

An ITS must take into account the hints that it has given when interpreting student

actions and updating the student model. Typically, a student will ask for hints down

to a certain level of specificity before taking the action suggested by the hint. Thus,

the student model should interpret student actions taken in response to a hint diffe-

rently depending on the hint’s specificity.

This problem has been solved di¡erently in di¡erent ITSs. For instance, the CMU
Cognitive Tutors (Anderson et al., 1995) do not count actions that are preceded by
hints for the purposes of knowledge tracing. The probabilities of mastery rise
only when the student enters an action without help from the tutor. Perhaps the most
elaborate and potentially accurate method of interpreting hints is used by the SMART
ITS (Shute, 1995), which uses a non-linear function derived from reports by experts
to boost the level of mastery by di¡erent amounts, depending on the speci¢city of
the hint and the level of mastery before the hint was given.

Our approach implements a simple theory of hints directly in the Bayesian network.
The theory is based on two assumptions: ¢rst, hints are worded so as to remind
the student of the requisite knowledge, rather than teach it. (Teaching missing pieces
of knowledge is handled by the Conceptual Help system (Albacete and VanLehn,
2000), which is not discussed here.) Thus, procedural hints do not directly cause stu-
dents to master knowledge. Second, a strong hint increases the chance that the student
can guess the next action rather than derive it from knowledge. Thus, a hint can
cause an entry directly. In other words, hints a¡ect actions directly but not domain
knowledge.
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This mini-theory of hints is encoded in the Bayesian network as follows.Whenever a
hint has been given for a Proposition node, a new node is added as its parent, repre-
senting the fact that a hint was given. The conditional probability table of the Pro-
position node is modi¢ed so that the node may be true if it was derived either
via the application of a known rule, or via guessing based on the hint. Moreover,
the higher the speci¢city level of the hint, the more likely it is that the target node
is true. In operation, this means that when the student makes the corresponding entry,
the hint node ‘explains away’ some of that evidence, so the probability of mastery
of the requisite knowledge is not raised as much as it would be if the student made
that entry without receiving a hint.

3.3. USING THE NETWORK TO GENERATE HELP

Although the focus of this paper is on the construction of Andes’ student model, it is

worth a moment to explain how the student model is used to provide support during

problem solving. Because Andes’ policy is to help students solve problems their own

way, rather than in a predefined optimal way, when a student asks for help Andes

needs to figure out what goal the student is probably trying to achieve (plan recog-

nition) and which is the action the student is stuck on because of lack of the appro-

priate knowledge (action prediction).

Thus, after a help request, the procedure for selecting a hint topic (Gertner, Conati
andVanLehn,1998) starts fromthemost recentlyobservednode in theBayesian network
and searches upward, looking for a goal that the student is most likely to be pursuing.
It then searches downward from that goal node, looking for a rule application with
a low probability of being performed. Such a rule application is probably where the
student is stuck for lack of knowledge, so it becomes the focus of the coach’s hint.

The search through the network is necessary because the semantics of aTvalue on a
Goal node do not indicate whether the goal has been achieved yet or whether the
student intends to achieve that goal next. It only indicates that the goal can be derived
by the student at this time. As a consequence, when Andes is searching for a goal
that the student is probably trying to achieve, it must explicitly check whether all
the actions beneath the goal have probably been done. If so, that goal has probably
been achieved already, and Andes should search for a di¡erent goal. This is an uncer-
tain decision, as students are allowed to skip actions and do them mentally. Thus,
even if some of the actions beneath a goal have not actually been done, the goal might
still be considered achieved by the student. This uncertainty is currently handled
by heuristics in the search algorithm rather than by the Bayesian network itself.

The Bayesian network is also used to decide whether the student should be given
instruction on a rule. If Andes selects a certain rule application for a hint, and
the posterior probability of the corresponding Rule node is below a set threshold,
then it calls another coaching module, the Conceptual Helper, to give a mini-lesson
on that rule (Albacete and VanLehn, 2000). Otherwise, it just gives hints designed
to jog the students’ memory and refocus their attention.
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The posterior probabilities on the rules could also be used to guide the selection of
exercises for the student. In particular, Andes could choose a problem that involves
only a few rules that the student has not yet mastered, on the theory that such problem
would be challenging but not too di⁄cult, and thus would maximize the change
of learning the unmastered rules. However, when Andes was evaluated at the USNaval
Academy, we decided to have Andes assign the same problems to all students so that
the evaluation would be more controlled.

4. Probabilistic Student Modeling for Example Studying

In order to help students study examples more effectively via self-explanation, the

Andes’ student model for example studying needs to assess how well a student is

self-explaining the current example and to identify those parts that may benefit from

further self-explanation.

This modeling task involves challenging new student modeling issues. First, the
student model must be able to assess whether and how students self-explain even when
the students do not build their explanations with the SE-Coach interface. This must,
be done using only limited data on students’ attention and estimates of the students
domain knowledge. Second, because some students tend to ‘self-explain ahead’
parts of the examples that they have yet to uncover (Renkl, 1997), attention to a given
example line can indicate not only self-explanation of that line, but also of subsequent
lines. Third, because the SE-Coach menus provide strong sca¡olding to build self-
explanations, it is unclear how much credit a student’s physics knowledge should
get for a correct self-explanation that the student produced through these menus.These
are the issues that were labeled, respectively, reading latency, self-explaining ahead
and self-explanation menu selection in Section 1.4. In the following sections, we
describe how we extended Andes’ Bayesian networks for problem solving to handle
the additional interpretation challenges related to these issues.

4.1. THE BAYESIAN NETWORK FOR EXAMPLE STUDYING

The task-specific part of the Bayesian network for example studying is derived from

an example’s solution graph using the same mechanism that we described in Section

2.2. For the SE-Coach, this network represents a model of correct self-explanation

(SE model) for that example. In particular, because Rule-application nodes in the

Bayesian network encode how solution steps in the example derive from physics

and planning rules, they represent exactly the self-explanations for correctness and

utility that the SE-Coach targets, and that we introduced in Section 1.3:

. how a solution step can be explained in terms of domain rules (step correctness)

. what goal each solution step achieves in the example solution plan (step utility).

For instance, Figure 11b shows the segment of SE model for the part of the example
shown on the left of the ¢gure. The Rule-application node RA-body-by-force in
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Figure 11b encodes the explanation that Jake is chosen as the body because a physics
rule says that if we want to ¢nd a force on an object, that object should be selected
as the body to which to apply Newton’s 2nd law. The node RA-goal-choose-body
encodes the explanation that choosing Jake as the body ful¢lls the ¢rst subgoal of
applying Newton’s 2nd law, i.e., selecting a body to which to apply the law.

This interpretation of the task-speci¢c part of the Bayesian network as a model of
correct self-explanation for the current example requires a semantics that di¡ers from
the semantics in the networks for problem solving. The Boolean values of Proposition
nodes in the Bayesian networks for example studying represent the probability that
the student is aware of the corresponding facts or goals. The Boolean values of
Rule-application nodes represent the probability that the student has self-explained
the corresponding derivations. In particular, the probability

PðRA ¼ T j all parents ¼ TÞ ¼ 1 � a ð1Þ

(where a is the noise parameter in the Noisy-And relation for Rule-application

nodes, described in Section 2.2.2.2) is used in the student model to address the

issue of self-explaining ahead. This probability represents a student’s tendency to

Figure 11. Segment of student model for the portion of example shown to the left. Part (b) of the figure

shows the model structure before any student’s action. The two numbers under each node indicate the

node probability before and after the student’s actions, represented by the nodes in part (a). The letters

labeling some of the links are used to refer to the links in the text.
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self-explain an inference as soon as she has the knowledge to do so (Renkl, 1997).

Hence, a student who tends to self-explain ahead will be characterized by a low a
in the Noisy-AND relationship, while a student who tends to self-explain a line only

upon reading it in the example will be modeled by a high value of a. Although the

value of a generally depends on the student only,3 it can sometimes also depend

on the particular Context-rule in question. For instance, most students taking intro-

ductory physics understand whether they need to apply Newton’s 2nd law as soon as

they read a problem’s statement. Thus, the Context-rule R-try-Newton-2law in

Figure 11b is generally associated with a low a .

Prior probabilities of root Proposition nodes in the Bayesian network, representing
the example given, are set to 0 until the student starts reading the example text
(see for instance the ¢rst number under the node G-force-on-Jake in Figure 11b).
As a student performs reading and self-explanation (SE) actions in the SE-Coach
interface, the initial Bayesian network is dynamically updated with nodes representing
these actions. Figure 11a, for instance, shows the nodes that are added to the network
after a student

1. viewed the example line ‘Find the force exerted on Jake by the rope’ long enough for
reading it (node Read-L1);

2. viewed the line ‘To solve this problem, we choose Jake as the body’ somewhat longer
(node Read-L2).

3. self-explained ‘To solve this problem, we choose Jake as the body’ with the Plan
Browser (node pb-choose-body).

The second number under each node in Figure11b shows the updated probability of
that node after the student’s actions in Figure 11a. In the next sections, we describe
how Andes student model uses the Bayesian network formalism to interpret reading
time and use of the self-explanation menus.

4.1.1. Interpreting the Student’s Reading Time

As mentioned earlier, one of the main problems for the SE-Coach student model is

how to interpret student reading latency to assess self-explanation. The basic hypo-

thesis we implemented in the student model is that the probability of self-explaining

a rule application is a function of both the time a student spends studying an exam-

ple line derived from that rule application and the probability that the student knows

the rule and its preconditions. This section describes how that hypothesis is encoded

in the Bayesian network.

Read nodes (nodes with pre¢x Read in Figure 11a) are dynamically added to
the student model to represent viewing example lines in the SE-Coach masking inter-
face. The values of Read nodes are LOW, OK or LONG. They re£ect the duration
of viewing time, and are assigned by comparing the total time a student spent viewing

3This parameter could be set, for instance, by observing how a student studies a test example.
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an item (TVT) with the minimum time necessary to read that item (MRT).We cur-
rently compute the MRT for each item by assuming 3.4 words per second, which
is the reading speed of an average-speed reader4 (Just and Carpenter, 1986). Depend-
ing upon the result of the comparison, the value of a Read node can be LOW
(TVT � MRT, time insu⁄cient for reading), OK (TVT � MRT, time su⁄cient
for reading only) or LONG (TVT 	 MRT, time su⁄cient for self-explanation).

Each Read node connects to the Proposition node re£ecting the semantic content of
the viewed item (e.g., link A and E in Figure 11). These links indicate that viewing
time in£uences the probability of being aware of the related content.When a Proposi-
tion node has input from both a Read node and a Rule-application node (e.g., F-
jake-is-the-body in Figure 11b), then a student can acquire the corresponding propo-
sition either by reading it in the example or by deriving it from rules and previous
propositions.

This relationship is represented in the conditional probability table for Proposition
nodes (seeTable 1). If the parent Rule-application node isT (i.e., the student explained
the corresponding derivation), the proposition node is T (i.e., known by the student).
Otherwise, the numbers in the table indicate that the probability of knowing the Pro-
position node depends on reading time: it is small if reading time is LOW, high when
the time is OK, and even higher when the reading time is LONG.

Some Proposition nodes in the Bayesian network may not be connected to a Read
node, even after the student has viewed all the elements in the example solution.This
happens when the worked out solution omits some of the solution steps. In Figure
11, for instance, the nodes G-try-Newton-2law and G-goal-choose-body cannot have
any Read node pointing to them, because these goals are not explicitly mentioned
in the example solution. A student can become aware of unmentioned propositions
only by deriving them.

The fact that the student viewed an example item does not necessarily mean that the
student self-explained it. However, the longer the student viewed an example item,
the higher the probability that the student self-explained it, provided that the student
has su⁄cient knowledge to do so.5

This relationship is encoded in the student model by linking the Read node that
represents viewing an example line with the Rule-application nodes that represent
self-explanation for correctness (e.g., link C in Figure 11) and self-explanation for uti-
lity (e.g., link D in Figure 11) for that line. The conditional probability table for these
Rule-application nodes is modi¢ed to take reading time into account, as shown in

4More accurate values for this parameter could be obtained by explicitly testing the reading speed of indi-
vidual students before they start using the SE-Coach.

5This relationship between probability of self-explanation and viewing time relies on the assumption
that viewing time reflects time spent thinking about a given example line. This assumption is of course not
always true, especially because we are currently measuring viewing time indirectly through the time a line
stays uncovered. The assumption would be more accurate if we had a way to track the student’s gaze to
measure the student’s reading patterns more accurately, or if the probability of self-explanation was also
conditioned on a node representing a student’s tendency to self-explain, determined a priori.We plan to
explore these extensions in future versions of the SE-Coach.
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Table 2. No matter how long the student attends to the derivation, it cannot be self-
explained correctly if the student does not have the necessary knowledge of the cor-
responding Context-rule and its preconditions. Cases where such knowledge is missing
are grouped together in the row labeled ‘otherwise’ in Table 2. On the other hand,
if the student has the necessary knowledge, the probability that proper self-explanation
occurs increases with viewing time. If viewing time is LOW (i.e., insu⁄cient for read-
ing) or OK (i.e., su⁄cient for reading only), self-explanation for this line could only
have occurred if a student reasoned forward from previous lines. The probability that
this happens is given by Equation (1), representing the student’s tendency to self-
explain ahead. Thus,

P(RA=T j Rule=T, All preconditions=T, Read 2 fLOW,OKg) ¼ 1 � a

as shown in Table 2. If reading time is LONG, the probability that the student self-

explained becomes high.

4.1.2. Modeling Student Use of the Self-explanation Menus

Another action interpretation problem that the SE-Coach student model must face

is how much credit should be given to student self-explanations built through the

SE-Coach menu-based tools, and how to count the feedback the SE-Coach provides

as students work through the menus. This section describes how this problem is

addressed in the Bayesian network.

Nodes representing the student’s self-explanation actions (SE nodes) are dynami-
cally added to the Bayesian network. For instance, the node pb-choose-body in Figure
11a represents the action of using the Plan Browser on the line ‘To solve this problem
we choose Jake as the body.’As we described in Section 1.3, the SE-Coach’s templates
re£ect the content of the system’s physics rules. Hence, template ¢lling provides

Table 2. Conditional probability table for a rule-application node after a student viewed the related

proposition nodes.

Knows Knows READ

CONTEXT- RULE All Preconditions LOW OK LONG

T T 1�a 1�a max{ð1 � aÞ; 0:9}

otherwise 0 0 0

Table 1. Conditional probability table for a proposition node viewed by the student.

READ LOW OK LONG

Rule application
T 1.0 1.0 1.0

F <0.4 >0.9 	0.9
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evidence of the student’s understanding of the corresponding rule. This is encoded in
the Bayesian network by linking the SE node for a template ¢lling action with the
Context-rule node corresponding to that template’s content. Similarly, the selection
of goals in the Plan Browser provides evidence of how well a student understands
the mapping between solution steps and the underlying solution plan.This is encoded
in the Bayesian network by linking Context-rule nodes establishing goals in the
SE model with the SE nodes encoding goal selection in the Plan Browser (see link
B in Figure 11).

Even if a student has little knowledge of a rule, she may still be able to generate a
correct self-explanation involving that rule by using the SE-Coach tools, because
of the guidance that these tools provide. Moreover, the more guidance the tools
provide in the form of negative feedback on menu selections, the less evidence there
is that the student knows the relevant rule. To model this interpretation, we direct
the link from the Context-rule node to the SE node (see Figure 11a) and use the entry
P(SE¼TjContext-rule¼F) in the SE node conditional probability table to represent
the probability that a student can complete a correct SE action without knowing
the corresponding rule. This conditional probability is adjusted dynamically depend-
ing on the student’s use of the menus. In particular, the higher the number of wrong
attempts a student makes before generating a correct SE action, the higher we set
P(SE¼TjContext-rule¼F). This implements a sensible interpretation policy,
namely that such student’s behavior makes it more likely that the student achieved
the correct action through random selection in the SE-Coach tools, rather than
through reasoning.

4.1.3. Using the Student Model to Support Self-explanation

As we described in Section 1.3, the SE-Coach delays its interventions until the stu-

dent tries to leave an example. At that point, the marginal probabilities of Rule-

application nodes in the student model represent the probability that the student

has self-explained the corresponding derivations. If a Rule-application node has a

marginal probability below a given threshold, the SE-Coach will suggest that the

student explain the associated example line. This section describes the process in

more detail.

When the student indicates the desire to leave the example, the SE-Coach performs
the following steps:

1. Check if the student model contains Proposition nodes that both correspond to
example lines and derive from a Rule-application node with probability below
the threshold for self-explanation.

2. For each of these Proposition nodes:
^ Add the corresponding example line to the list of lines that the student should

explain further (i.e., the list of lines that will have their cover boxes highlighted
in pink in the interface).
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^ If the low probability of the parent Rule-application node is due to low prob-
ability of a Context-Rule node, add a prompt to self-explain the line using
the Rule Browser/Template (when the Context-Rule node represents a physics
rule) or a prompt to use the Plan Browser (when the Context-Rule node repre-
sents a planning rule).

^ If the low probability of the parent Rule-application node is due only to the low
value of a Read node, add a prompt suggesting to read the line more carefully.

As an illustration, consider Figure 11, which shows the probabilities in the student
model after a student performed the two reading actions and the Plan Browser action
whose nodes appear to the left of the dotted line. Suppose that the student tries to
leave the example now.The only Proposition node that derives from a Rule-application
nodewith lowprobabilityand that corresponds toan example line isF-Jake-is-the-body.
Therefore, the SE-Coach adds the corresponding example line ‘To solve this problem,
we chose Jake as the body’ to the list of lines to be further explained. Because the low
probability of RA-body-by-force is due to low probability of the Context-rule
R-body-by-force, the SE-Coach adds a prompt to use the Rule Browser/Template to
self-explain the line. If the Context-Rule node R-goal-choose body also had had low
probability, the SE-Coach would have added a prompt to self-explain this line using
the Plan Browser. On the other hand, if both rule nodes had had high probability
while the value of node Read-L2 had been low, the SE-Coach would have added only
a prompt to read this line more carefully.

If the SE-Coach did not use the Bayesian network, it would have to make many
more suggestions. It would probably suggest re-reading all lines whose latency was
normal or below normal. It would probably suggest using the self-explanation menus
for all lines that had not yet been explicitly self-explained.With the Bayesian network,
the suggestions of the coach are much more focused, and thus more likely to be useful
to the student, and thus more likely to be acted on by the student.

5. Evaluations of Andes’ Student Models

In this section, we first summarize the results of various evaluations that provide evi-

dence of the effectiveness of Andes’ student model for problem solving. Next, we

describe an evaluation of the student model for example studying.

5.1. EVALUATION OF THE STUDENT MODEL FOR PROBLEM SOLVING

Evaluation of a statistical approach to student modeling can use techniques from

both disciplines of machine learning and user modeling (Zukerman and Albrecht,

2001). From a machine learning perspective, we are interested in evaluating the accu-

racy of the model’s predictions on a known test set of data. User modeling evalua-

tions focus on the accuracy of the model in predicting or inferring the state of real

users. There is little consensus on a methodology for performing such evaluations,
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and very few are reported in the literature. We have performed a machine learning

style evaluation of Andes’ student model for problem solving (VanLehn and Niu,

2001) and, although we still don’t have a formal user-modeling-style evaluation,

we have empirical results showing that Andes enhances student learning, which pro-

vides indirect evidence of the model’s effectiveness.

In the next two sections we summarize the results of the machine learning style
evaluation and of the evaluations with real students.

5.1.1. Machine Learning Style Evaluation

In the machine learning style evaluation of Andes (VanLehn and Niu, 2001), a set of

simulated students were created with predefined knowledge profiles, and these stu-

dents’ solutions to the Andes physics problems were simulated. The student model

was run to determine if it could accurately detect the knowledge profile of the simu-

lated students. Unlike some machine learning evaluations, where many researchers

use the same data to evaluate their software, Andes can only be compared to differ-

ent versions of itself. Thus, this evaluation concentrated on varying numerical para-

meters (e.g., the prior probabilities) and structural features (e.g., whether students

are required to correct their errors).

The results show that Andes’ assessment, with its normal parameter settings and
structural features, correctly determined whether a rule was mastered or unmastered
about 65% of the time, aggregating over all synthetic students and all evaluation con-
ditions. There were two major impediments to increased accuracy.

The ¢rst impediment was that not all the inferences that students can make are
visible on the user interface. For instance, when a student adopts a goal, there is
no way to tell Andes about it. If every goal or fact node in the Bayesian network
had a user interface action associated with it, then Andes’ accuracy would rise from
65% to 75%.

The second impediment is that Andes does not require students to make entries
even when its interface allows doing so. For instance, even if the student infers that
the velocity of a body is zero, the student doesn’t have to write down the equation
V¼ 0. If Andes could assume that missing actions implied missing inferences, then
its accuracy would rise from 65% to 70%.

If both impediments were removed, then Andes’ accuracy would rise from 65% to
95%. In contrast, varying other parameters and features (e.g., prior probabilities, slip
and guess parameters) had relatively little in£uence on accuracy.

These results suggest that Andes is doing a good job of student modeling given the
amount of information that the user interface makes available about student reason-
ing. In particular, all the subjective probabilities that we had to include due to the
lack of empirical data are probably not hurting Andes’ accuracy much, as it proved
not to be sensitive to these numbers.

The only way to do better appears to be requiring students to display more of their
thinking. But this would not only slow them down and increase the time to learn
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the user interface, it could also make Andes so tedious to use that students simply
would not accept it.

5.1.2. Evaluation with Real Students

In the Fall of 1999 we performed a summative field evaluation of Andes at the Naval

Academy (Schulze et al., 2000). Andes was used for four weeks by 173 students in

eight sections of the Naval Academy’s introductory physics course. At the end of this

time, they were given a midterm exam covering material that was taught by Andes

(and by the instructors during course lectures). The students’ performance on the

midterm was compared to a control group of 162 students whose sections did not

use Andes. The results of this comparison were encouraging. Students who used

Andes performed about a 1/3 of a letter grade better on average than students

who did not use Andes (T(334)¼ 2.21, p¼ 0.036, two-tailed).

Andes was also evaluated in the fall of 2000 (Shelby et al., 2001). This version of
Andes was essentially the same as the one evaluated the preceding year. However,
it covered more chapters of mechanics, had more problems per chapter, included some
more di⁄cult problems, and required the students to draw vectors explicitly (in the
previous version, students could de¢ne variables representing vector quantities without
actually drawing the vectors).The experimental design was the same, with140 students
in the Andes condition and135 students in the control condition. Students in theAndes
condition scored signi¢cantly higher on the post-test (T(274)¼ 7.74, p< 0.00001,
two-tailed). The e¡ect size was 0.92 of a standard deviation, which at the US Naval
Academy corresponds to raising the students’ grade by about one letter (e.g., from
C to B). This e¡ect size compares well with other ITS, many of which also have an
e¡ect size of about 1.0 (Shute and Psotka, 1996).

The Andes design was based on the hypothesis that instruction could be improved
by simply coaching students as they did their homework and making no other changes
in the course.This hypothesis appears to have been borne out. Although the US Naval
Academy instructors collaborated with us in designing the system andwere thus famil-
iar with it when they began to use it in their classes, they used the same textbook,
the same labs and almost the same lectures as were used in the Control condition
and the rest of the course. In contrast, many other ITS that have also achieved a
1standard deviation e¡ect size required instructors to use a new curriculum and some-
times even a new textbook (Koedinger et al., 1995; Corbett et al., 2000).

Although learning gains are the traditional measure of success for educational soft-
ware, an arguably more important measure is voluntary acceptance by both
instructors and students, because if either refuse to use the software, then it doesn’t
matter how much the software improves learning. As just discussed, Andes seems
to work well even when instructors change very little in their courseOin particular,
they can continue to use their old textbook and lecture notes. This should increase
instructor acceptance. Student acceptance was tested in the fall 2000 US Naval Acad-
emy evaluation. In the physics courses at the US Naval Academy, doing the assigned
homework usually is not mandatory. Moreover, students in the Andes conditions were
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encouraged to use Andes, but they could use paper and pencil if they wanted.Thus, the
number of problems done on Andes is a simple measure of student acceptance,
because if students found it too di⁄cult to use relative to its perceived bene¢ts, then
they would switch to pencil and paper or just not do their homework. From automated
analyses of student log ¢les, it was found that students solved 50 out of the 60 problems
assigned on Andes. This is encouraging, but unfortunately we lack standards to com-
pare this against, as we have no similar measure for the Control condition or from
other educational software.

A ¢nal type of evaluation that may be done for a student model that does plan
recognition is to look at how accurate the system is at inferring the students plans.
Both positive learning gains and the students’ acceptance of Andes provide indirect
evidence that its student model for problem solving does quite a good job in predicting
the students’ intended goals, or at least that Andes’ interventions based on the model’s
predictions are not disruptive or annoying for the students. Gaining more direct evi-
dence of the student model predictive accuracy is hard, because one must have a stan-
dard for judging what the students’ goals actually were. We attempted to overcome
this di⁄culty by using an approach that involves comparing the predictions produced
by a user model to subjective human judgments of the user’s goals. Using log ¢les
from the 1999 evaluation, we randomly selected episodes where the students asked
Andes for help. We generated a snapshot of the Andes screen just prior to its help
message.We then gave these screen snapshots to expert physics tutors, and asked them
to judge (a) the goal that the student was trying to accomplish and (b) what help they
would give to this student. Our plan was to evaluate Andes using only snapshots where
the experts agreed with each other. Unfortunately, the agreement among the experts
was so low that there were too few snapshots left for evaluating Andes. We intend
to repeat the study with a new version of Andes and a much larger sample of
snapshots. We will also give the judges a summary of the tutorial session up to the
point of the snapshot, since they said they sometimes needed that in order to make
an informed judgment.

5.2. EVALUATION OF THE STUDENT MODEL FOR EXAMPLE STUDYING

The SE-Coach student model guides the SE-Coach to elicit students’ self-explana-

tions on lines that are assessed to be problematic for them. Thus, an indirect way

to evaluate the effectiveness of this student model is to verify how the SE-Coach

interventions influence students’ learning. We obtained preliminary results on this

from a study that we conducted in our lab.

During the study, 29 subjects studied Newton’s 2nd Law examples with the com-
plete SE-Coach (experimental condition), while 27 subjects studied the same examples
with the masking interface only and no coaching (control condition). All subjects took
a pretest and a posttest consisting of Newton’s 2nd Law problems. At the time of
the experiment, all subjects were taking introductory physics at one of three di¡erent
colleges and had started studying Newton’s laws in class. In this section, we focus
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on results related to how the SE-Coach interventions, and thus the student model,
in£uenced the performance of students in the experimental group. More general
data on the positive results we obtained on the di¡erence between the performance
of the experimental and the control groups can be found in (Conati and VanLehn,
2000).

Constraints on the study duration prevented us from initializing the student model
with data on the students’ initial knowledge and studying style. Hence, we assigned
to most of Andes’ rules a prior of 0.5, and we assumed that students were very unlikely
to explain ahead (a¼ 0.98) because other studies (Renkl, 1997) show that this is con-
sistent with most students’ behavior.

We computed from log data how often students followed the SE-Coach’s adaptive
prompts to further self-explain. The results are summarized in Table 3.

For each type of prompt, the table reports: (i) the maximum number of prompts that
could appear in the interface for the three examples used in the study. These are
the prompts the SE-Coach would generate if there was no student model. (ii) The
average number of prompts adaptively generated by relying on the student model.
(iii) The average percentage of these prompts the students followed.We then computed
the correlation between the percentages of followed prompts and students’ post-test
scores, after regressing out pretest scores. All three measures signi¢cantly (or nearly
signi¢cantly) correlate with post-test performance (p¼ 0.056, R2¼ 66% for Rule
Browser/Template prompts; p¼ 0.024, R2¼ 64.5% for Plan Browser prompts;
p¼ 0.016, R2¼ 63% for ‘Read more carefully’ prompts).These data are consistent with
the hypothesis that the adaptive prompts based on the student model e¡ectively elicited
self-explanations that improved students’ learning, although further data should be
gathered to control for other variables that might have caused the correlation, such
as general academic ability or conscientiousness.

The correlation exists despite the fact that students, on average, followed less
than half of the SE-Coach prompts (seeTable 3).We conjecture two possible explana-
tions for why students did not follow the prompts more extensively. The ¢rst is that
the low accuracy of the initial parameters in the student model caused the model
to underestimate the amount of spontaneous self-explanation that students generated.
Thus, students rightly ignored those prompts asking them for redundant self-
explanations.The second explanation is that those students who tended to overestimate
their understanding ignored the SE-Coach prompts, even when the prompts were

Table 3. Percentage of SE-Coach prompts that students followed

Prompt Type Max. Generated

Followed

(%)

Use RuleBrowser/Template 43 22.6 38.6

Use PlanBrowser 34 22.4 42.0

Read more carefully 43 7 34.0
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justi¢ed. If this was the case, obligating the students to follow the SE-Coach sugges-
tions would increase the e¡ectiveness of the system. Further evaluations of the student
model with more accurate initial parameters will clarify this issue.

We also examined the accuracy of the SE-Coach’s assessment. We found an
interaction between accuracy and when subjects had started studying Newton’s Laws
in their classes. In particular, we computed the correlation between posttest scores
and the number of rules that reached high probability in the student model. The cor-
relation is very low (r¼�0.03) for the17 subjects from classes that had started studying
the examples’ topic more than a week before the study (early-start subjects) and it
is higher (r¼ 0.33) for the 12 subjects from classes that had started just a few days
before the study (late-start subjects). Since our data showed no signi¢cant di¡erences
in the two groups’ initial knowledge or in how they used the interface tools, we hypo-
thesize that the di¡erence in the correlation exists because the SE-Coach examples
were more challenging for late-start subjects and therefore they put more e¡ort in
reasoning and learning from their SE actions. Hence, their long reading times and
use of the menus was really associated with self-explanation, whereas similar
behaviors from the early-start students was not.

If this interpretation is correct, then it suggests that the students’ learning
stage should be taken into account when assessing knowledge based on SE actions.
For instance, in the conditional probability table for SE nodes, the probability
P(SE¼T j Rule¼F) (e.g. the probability of generating a correct SE action without
knowing the corresponding rule), should be set to a higher value if a student has been
working on the example topic for some time (like our early-start subjects), so that
this student’s knowledge receives less credit for her self-explanations.

6. Related Work

The development of techniques for reasoning under uncertainty that have appeared

in the AI community since the mid eighties has facilitated a rapid growth of interest

in probabilistic approaches to user modeling. As Jameson (1996) outlines, these user

models tend to address three general purposes: (1) inferring the user’s knowledge or

general abilities (e.g., Mislevy, 1995; Petrushin, Sinitsa and Zherdienko, 1995; Van-

Lehn and Martin, 1998), (2) recognizing the user’s plans or goals (e.g., Charniak and

Goldman, 1992; Huber et al., 1994; Conati and VanLehn, 1996b; Albrecht et al.,

1999), or (3) predicting the user’s inferences (e.g., Van Mulken, 1996; Conati and

Carenini, 2001) and future behavior (Horvitz and Barry, 1995; Horvitz et al.,

1998; Zukerman et al., 1999). Depending on the purpose of the system, one of these

functions may be treated as more important than the others. For instance, Charniak

and Goldman are primarily interested in recognizing the plans of characters in a

story, while Horvitz and Barry are interested mainly in how the user will respond

to information presented by their system. In a student model that supports provision

of help during a fairly unconstrained tutorial interaction all three functions are

important and interrelated. Thus, the Andes’ model combines all three of them into
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a single Bayesian network representing both the students’ domain knowledge as well

as their past and future plans and goals.

Student modeling poses some unique challenges for probabilistic approaches
due to the fact that students’ knowledge changes over time as they learn. This makes
it even harder to perform plan recognition and behavior prediction because the stu-
dent model cannot assume, as many plan recognition systems do (Carberrry,
2001), that the user always has perfect knowledge of the available plans throughout
the interaction. Both the models developed for the Carnegie Mellon CognitiveTutors
(Corbett and Bhatnagar, 1997) and for the SMARTsystem (Shute, 1995) are designed
to assess the student’s knowledge as it evolves during the interaction with the tutor,
and both of these systems have been favorably evaluated as accurately re£ecting stu-
dents’ learning.While neither of these systems uses Bayesian networks, Reye (Reye,
1998) has shown that both models can be formulated as a dynamic Bayesian network
with the same basic behavior. However, none of these models make use of probabilistic
knowledge assessment to guide their inference of the student’s goals, as Andes’ student
model does.While Shute’s system does not need to infer students’ goals, the cognitive
tutors do. This is because, although they make the students explicitly enter all their
solution steps and thus reduce uncertainty about what the student is trying to do,
their solutions don’t have ¢xed step-ordering. Thus, like in Andes, when a student
has asked for help, there are several possible correct actions that could be done next.
The Cognitive Tutors resolve the ambiguity by using heuristics based on asking
the student, on the location of the student’s cursor (Anderson et al., 1995), or on
the student’s most recent action (Corbett et al., 2000).

As we discussed in Section 3.3, Andes relies on the student model probabilities
to predict which goal the student is probably focusing on. These predictions drive
a heuristic algorithm for selecting the content of the tutor’s hints. DT Tutor
(Murray and VanLehn, 2000) extends the Andes network by adding decision nodes
and utilities so that the choice of tutor action can be done completely probabilistically.
In particular, the tutor uses the extended network to predict the student’s reaction
to proposed tutor actions, evaluates the utility of the resulting student, tutorial
and dialogue states, then chooses the tutorial action that maximizes the expected
utility. However, this improved reasoning comes at the cost of greatly increased net-
work size and therefore reduced speed for updating the network.

WhileBayesian networkshavebeenby far themostpopular formalism in recentwork
on numerical user models, other numerical methods have been used as well. In
particular, Jameson (Jameson,1996) describes a number of systems that useDempster-
Shafer theory (Carberry, 1990; Bauer, 1995) and Fuzzy Logic (Katz et al., 1992).
A recent review article of the ¢eld (Zukerman and Albrecht, 2001) shows how
work on statistical techniques in user modeling has broadened in scope in the last
¢ve years.

An important and di⁄cult question with respect to probabilistic or numerical
approaches to student modeling is how they might be evaluated (see Section 5
for a discussion of evaluations of the Andes system). Student models that focus on
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knowledge assessment may be evaluated by comparing their predictions of the stu-
dent’s knowledge to actual student performance on post-tests. The SMART student
model (Shute, 1995), which uses a set of regression equations to update the estimate
of students mastery of each curriculum element, was evaluated and found both to
accurately predict students’ posttest performance and to contribute to impressive
learning gains of greater than 2.0 standard deviations when used to guide the tutoring
system’s behavior. Similarly, the knowledge tracing component of the ACT Program-
ming Tutor was found to accurately predict student post-test performance (Corbett
et al., 2000), and to help students learn more and faster by using mastery learning
(Anderson et al., 1995). However, there are several problems with this approach.
The student model assesses student competence on many individual pieces of knowl-
edge, but the post-test yields a single score. This can allow systematic inaccuracies
in the student model to remain undetected. To put it a little di¡erently, when the out-
come of the evaluation is a single number (the correlation between predicted post-
test score and actual post-test score), how can one interpret its value? As Corbett
et al. (2000) discovered, it takes substantially more work to discover why the correla-
tions are low and make the appropriate changes to the student model to raise them.
Moreover, as with any assessment technique, there are the classic issues of reliability
and validity. For instance, a post-test can only sample the student’s knowledge, which
raises the issue of whether it is a ‘fair’ sample of the competence in the task domain.
VanLehn and Martin (1998) survey classic standards for evaluation of assessment sys-
tems, and indicate how OLAE (Andes’ predecessor) fares. Lastly, the main problem
with using post-tests for evaluation of knowledge assessment is that it confounds
the assessment technology with the cognitive task analysis. As Corbett et al.
(2000) show, their cognitive model sometimes used one rule when subjects actually
used two, for instance. Although this creates an inevitable inaccuracy in the assess-
ment, it is a fault of the cognitive task analysis and not of the assessment technique
per se. For all these reasons, evaluations with synthetic students (like the Andes’
evaluation we discussed in Section 6.1) are a very promising alternative to provide
valuable insights on the details of a user-model performance.

User models that focus on inferring a user’s goals or intentions tend to be more
di⁄cult to evaluate, since they require judging a posteriori what goals the user had
at di¡erent times during the interaction. One approach that has been used so far
is that of (Calistri-Yeh, 1991), who compared the predictions produced by his system
to that of human judges. We used a similar technique to evaluate the prediction
capabilities of Andes’ student model for problem solving, as discussed in Section 5.1.2.

7. Discussion and Future Work

We have presented a probabilistic approach to student modeling that relies on

Bayesian networks to deal with the high level of uncertainty inherent in providing

tailored support for homework-related activities in Andes, an intelligent tutoring

system for Newtonian physics. The homework-related activities that Andes supports
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include learning from worked-out examples in addition to problem solving, because

example studying is one of the fundamental activities that complement classroom

instruction.

Much of the uncertainty that Andes’ student models face is due to Andes’ philo-
sophy of giving students the initiative in the learning process.This means, for instance,
that students have the freedom to experiment with di¡erent solutions and learn from
their own mistakes, while Andes provides help and support when asked to but does
not constrain students to follow a prede¢ned solution path. Furthermore, Andes does
not require students to always express all their reasoning explicitly.

This focus on student initiative involves a higher level of uncertainty than more
constrained ITS do (e.g., Anderson et al., 1995) for two main reasons. First, allowing
students to follow multiple solutions forces Andes to confront the assignment of credit
problem, which arises every time there is more than one explanation for a user’s inter-
face action. Second, not requiring students to make all their reasoning explicit
can drastically reduce the amount of information the student model has for generating
its predictions (the bandwidth problem discussed in (VanLehn, 1988)). For instance,
when discussing theVanLehn and Niu (2001) evaluation of the Andes’ student model,
we noted that student modeling accuracy would increase from 65% to 95% if Andes
required students to enter on its interface all facts or goals as they were inferred.
But Andes’example studying and problem solving components cannot feasibly require
students to explicate all their thinking, because this would so greatly add to the
students’ burden that few students would be willing to use such a tutor, especially
as they become more pro¢cient in the instructional domain. Hence, Andes’ student
models will often have little information on the student’s reasoning and thus
must guess.

In this paper, we illustrated how we rely on the probabilistic reasoning frame-
work of Bayesian networks to enable Andes to make as much of an educated guess as
possible based on the available evidence. Given that one cannot have both freedom
and convenience for students while also having highly accurate student modeling,
it appears that our Bayesian approach has allowed Andes to made an appropriate com-
promise between the two, in that Andes is indeed an e¡ective tutoring system.
Both the Problem Solving Coach and the SE-Coach cause learning gains, and the
Problem Solving Coach appeared to be acceptable to students in a ¢eld testing situation.

The key to Andes’ success, as with all Bayesian network models, lies in accurately
representing the probabilistic dependencies in the task domain. Andes uses a knowl-
edge-based model construction approach to generate the part of the network that
represents the probabilistic dependencies between domain knowledge and inferences
in problem solutions.The principles and parameters used in creating chunks of Andes’
networks are essentially little theories of how speci¢c events relate to each other
and to the student’s knowledge and goals.We list here a brief summary of how these
theories were encoded in the Bayesian network formalism, along with a few lessons
we learned along the way.
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7.1. A DEPLOYED, REALISTIC STUDENT MODEL BASED ON BAYESIAN NETWORKS

As we mentioned earlier, the main problem that Andes student model needs to

address is the assignment of credit problem. The Bayesian solution that it adopts

is built on the approach that OLAE pioneered for assignment of credit during off

line assessment and that POLA extended to on-line plan recognition. None of these

Andes’ predecessors went beyond the prototype stage. To scale up the basic

approach for use by a fully fledged system deployed in the field, we had to add

hypotheses about knowledge, learning and behavior that increased the realism of

the student model. In all cases, a sensible hypothesis was posed and implemented

in the Bayesian network, albeit without the benefit of empirical calibration to deter-

mine the relevant parameters. In particular, we have presented solutions to the fol-

lowing issues:

1. Context speci¢city: knowledge is sometimes acquired ¢rst in a more speci¢c form
then generalized, thus making near transfer easier to obtain than far transfer
(Singley and Anderson, 1989). How can we track the generality of competence?
Andes distinguishes Context Rules from Rules (see Section 2.2.1).

2. Guessing: some actions make it easier to guess correctly than other actions. How
should assignment of credit re£ect this? The parameter b in the leaky-OR gate
(which de¢nes the conditional probability between an action and the di¡erent
ways to derive it) is higher when guessing is more likely to lead to success
(see Section 2.2.2.1).

3. Mutually exclusive strategies: some problems have multiple, mutually exclusive
solution strategies. Thus, evidence that the student is following one strategy
should be interpreted as evidence that they are not following the other strategy.
Andes student model uses Strategy nodes to enforce this behavior (see
Section 2.2.2.3).

4. Old evidence: how should evidence from earlier problems a¡ect the interpretation
of evidence from the current problem? Andes rolls up the task speci¢c network
of a completed problem by copying the marginal probabilities on Rule nodes
into prior probabilities (see Section 2.2.4).

5. Errors: errors of omission (missing actions) cause nodes to be clamped to False
only when the action is required, which happens rarely since there are only
few required actions in Andes. Errors of commission (incorrect actions) cause
nodes to be clamped to False only when the incorrect action directly and bla-
tantly contradicts the node’s action (see Section 3.2.1).

6. Hints: when the student has received hints before entering a correct action, how
much credit should the goals and rules that explain that action receive? An addi-
tional node is added to those representing alternative derivations of the action,
so that the more speci¢c the hint, the less credit those derivations receive
(see Section 3.2.2).
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7. Reading latency: when students study examples, they may pause longer as they
read some lines than others, and this may be evidence of self-explanation.
How can we properly interpret the latency of reading times? Andes uses Read
nodes whose values record the observed latency and combines them with knowl-
edge assessment to judge whether a student is self-explaining (see Section 4.1.1).

8. Self-explaining ahead: some students prefer to self-explain solution steps before
reading them in the example, while others prefer to read steps then self-explain
them (Renkl, 1997). Andes uses the noise parameter a to model how these
two di¡erent studying behaviors a¡ect the interpretation of reading latencies
(see Section 4.1).

9. Self-explanation menu selections: when students use menus to express self-
explanations, they may make a few errors, get feedback from the SE-Coach
on each, and then enter a complete self-explanation. How should a sequence
of such menu selections be interpreted? Andes dynamically changes the condi-
tional probability table of the SE nodes in order to re£ect the amount of feedback
the coach gives the student (see Section 4.1.2).

What we learned is that Bayesian networks, even when created by a rule-based
problem solver, are like any other knowledge representation formalism in that one
can fairly easily represent increasingly complicated and hopefully more realistic mod-
els. Like any other knowledge-based system, Andes should have its knowledge vali-
dated empirically, but this is unrealistic in most cases. We are fortunate to be able
to evaluate the system as a whole with real students, as described in Sections 5.1.2
and 5.2. The best we can do for testing individual hypotheses is to use synthetic stu-
dents, as described in Section 5.1.1.

7.2. THE NEED FOR PLAN RECOGNITION IN UNCONSTRAINED LEARNING

ENVIRONMENTS

Although assessment is important in itself, because instructors often want to see just

which rules a student has mastered, plan recognition is only useful inside an ITS as a

decision aid. That is, it helps the ITS decide what tutorial action to make. In building

a comprehensive student modeling framework that could support both assessment

and plan recognition, we realized that they are sometime in conflict.

In Andes, plan recognition is necessary for the problem solving coach to select what
step to suggest when a student asks for help. Because Andeswants tohelp students solve
problems in their own way, rather than teach a problem solving plan of its own as other
tutoringsystemsdo, itmustdeterminewhatgoal the student isprobably trying to achieve,
and suggest the action the student cannot perform for lack of knowledge. This de¢nes
the kind of plan recognition that the problem solving coach needs.

As we discussed in Section 3.3, the semantics of the T values on proposition and
rule application nodes in the student model for problem solving don’t quite
match the plan recognition requirements, because they only tell what the student
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can potentiallyderive, not what shehas alreadyderived or what shewants to derive next.
In short, the problem is that Andes’ nodes have the right semantics for assessment
but the wrong semantics for recognizing the student’s intentions. Thus, the problem
solving coach needs to resort to heuristic search to select a node for hinting, although
the search is guided by the student model’s probabilistic prediction of what inferences
the student can or cannot make.

One way to deal with this problemwithout resorting to heuristics as Andes does is to
augment the network so that it can represent both competence and intentions
(Murray and VanLehn, 2000). This requires Bayesian networks that have two nodes
for each goal. One node has the same assessment-based semantics as Andes’ goal
nodes, and the other node indicates whether the goal is probably one that the student
is currently intending to do.This allows the coaching system to perform hint selection
by relying solely on the network probabilities, but unfortunately generates much larger
student models that currently cannot provide the real-time responses that an
Andes-like interaction needs.

Andes only needs to recognize student intentionsbecause itwants tohelp students do
what they intend to do. So one might wonder whether it is it really worthwhile to devise
intelligentassistants thatsupportstudents in fairly unconstrainedpedagogicalactivities,
considering the e¡ort and challenges involved in building the student models suitable
for these assistants. This question may be further justi¢ed by the fact that empirical
studies with the CMU cognitive tutors, (which support more constrained interactions
than Andes and therefore rely on less complex student models) have shown that these
tutors can greatly enhance students’ learning (Koedinger et al., 1995).

Although we agree that a more constrained interaction can be bene¢cial in spe-
ci¢c educational settings, for speci¢c types of learners and in particular phases of
the learning process, we also believe that supporting more unconstrained, student-
led interactions is critical to building richer learning environments that can be
bene¢cial for di¡erent types of learners and at di¡erent learning stages (VanLehn
et al., 2000; Bunt et al., 2001). We argue that, ideally, the role of a comprehensive
model of the student’s knowledge and behavior in such environments should be to
allow an intelligent coach to dynamically switch from a directive tutoring style to
a more open one by taking into account both the student’s evolving understanding
and her preferred learning style (e.g. autonomous vs. passive). The goal would be
to achieve the best tradeo¡ between a pedagogical interaction that accommodates
the student’s preferences and one that is more suitable for her evolving level of
knowledge.

Our position is supported by empirical studies showing that open learning envir-
onments that rely solely on the student’s initiative and exploratory capabilities can
be highly bene¢cial for learners with the suitable level of knowledge and learning
skills, although they are not as e¡ective for learners who need more structure and
guidance in the learning experience (Shute and Glaser, 1990; Bunt et al., 2001).
Additional information on when and how more tutorial vs. more exploratory inter-
actions can support better learning (and consequently when a richer student model
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like Andes’ is necessary) could be gained by running user studies that compare the
version of Andes presented in this paper with a new, more restrictive version that
is currently under development for the U.S. Naval Academy.

7.3. SCALING UP

In order to tutor students through most of a semester, Andes had to have Bayesian

networks for around a hundred physics problems. Every time the problem solvers’

knowledge base changed, we had to regenerate all those Bayesian networks. As we

discussed in Section 2.1, we were able to automate the network construction process

so that it could be done with little human intervention. In particular, we did not have

to hand-edit any conditional probability tables. Thus, the knowledge management

problem turned out to be no worse for Andes than for any other rule-based knowl-

edge intensive application.

On a few physics problems, updating the Bayesian network using the exact algo-
rithm sometimes took longer than 40 seconds on the 400MHz Pentium computers
that were used in the fall 2000 evaluation.Thus, on some problems, we directed Andes
to use stochastic evaluation of the networks and to stop when 40 seconds were reached.
On other problems, the update was completely turned o¡. Hopefully, advances in
the Bayesian network update algorithms will allow us to remove these expediencies.
Because our networks are generated by a rule-based system, they mayhave regularities
that could be exploited by an improved update algorithm.

On the whole, the use of Bayesian networks for Andes’ student model seems to
have been a complete success. The design allowed elegant, precise representation
of sensible interpretation policies; it did not increase the knowledge management task,
and it did not slow the system down too much. Moreover, empirical evaluations
of the resulting coaches indicated that students learned more with them than with
conventional instruction.
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